Click above to listen to the audio version of this blog article.
Discover the fascinating principle behind hydrophobic interaction chromatography and how it is used in scientific research and analysis to separate biomolecules based on their hydrophobic properties.
Hydrophobic Interaction Chromatography (HIC) is a technique used in biochemistry and analytical chemistry to separate and purify proteins based on their hydrophobic properties. Unlike other chromatographic methods that rely on charge or size differences, HIC exploits the interaction between hydrophobic regions of proteins and hydrophobic ligands attached to the stationary phase of the chromatography column.
In HIC, proteins are usually loaded onto the column under conditions of a high salt concentration, which promotes the exposure of hydrophobic regions and increased hydrophobic interactions. As the sample is applied, proteins with higher hydrophobicity tend to bind more strongly to the hydrophobic ligands. In contrast, less hydrophobic proteins will bind less strongly, and proteins with the least hydrophobicity will even pass through the column.
To elute the bound proteins, a decreased salt gradient is typically applied, which reduces the hydrophobicity of the proteins and weakens their interaction with the hydrophobic ligands, allowing them to be eluted from the column due to the decreasing hydrophobicity.
HIC is particularly useful for separating proteins with similar charge or size, as it provides an additional dimension of separation based on their hydrophobic characteristics. It can also be used to purify proteins from complex mixtures, such as cell lysates or culture supernatants, or to remove contaminants from protein samples.
The principle behind hydrophobic interaction chromatography is the tendency of hydrophobic regions in proteins to interact with hydrophobic surfaces or ligands.
Proteins have hydrophobic regions and hydrophilic regions due to their composition of amino acids. The hydrophobic regions contain hydrophobic or nonpolar amino acids such as alanine, phenylalanine, tryptophan, methionine, etc. These nonpolar amino acids are usually buried within the protein structure in the aqueous surroundings. However, some nonpolar amino acids are found on the surface of the protein as hydrophobic patches, which are important for maintaining the structure and biological functions of the protein molecules. The extent of hydrophobicity of proteins varies depending on the number, size, and distribution of these hydrophobic patches on the surface, which are special characteristics of each individual protein.
In the absence of salt, a dense layer of water molecules surrounds the protein, shielding its hydrophobicity, while a thick layer of water is formed on the stationary phase of HIC, which also shields its hydrophobic ligands. These layers of water molecules prevent the protein from interacting with the stationary phase. Introducing a high salt concentration environment results in the disassembling of the polar water layers around the hydrophobic patches of the proteins and hydrophobic ligands. When the water layers are interrupted by the high salt concentration, the hydrophobic patches are exposed, and the hydrophobic interaction between the protein and the ligands is formed. This process is thermodynamically favored since the formation of these interactions allows the decrease of the total energy of the system.
Thus, in HIC, when a protein sample is applied to the column under high salt concentration, proteins with hydrophobic regions will interact with the hydrophobic ligands, resulting in their retention on the column. The degree of retention depends on the strength of the hydrophobic interaction, which is influenced by factors such as salt concentration, types of salt, pH, and temperature.
By manipulating these conditions, it's possible to modulate the strength of the hydrophobic interaction and achieve selective separation of proteins based on their hydrophobicity. All this makes HIC a versatile and powerful tool in protein purification and analysis. The types of hydrophobic ligands, the degree of substitution, and the types of solid support matrix determine the selectivities of different HIC resins, which create more potential for an HIC resin to be engineered and customized for various applications and biomolecules.
Hydrophobic interaction chromatography is widely used in various fields of research and industry. Some common applications include:
These are a few examples of the wide range of applications of HIC. Its versatility and effectiveness make it a valuable tool in many areas of scientific research and biotechnological fields.
Hydrophobic interaction chromatography offers several advantages that make it a popular choice in protein purification and analysis:
However, there are also some limitations to consider when using HIC:
Despite these limitations, hydrophobic interaction chromatography remains a valuable technique in protein and biomolecule purification and analysis, offering unique advantages and the ability to separate biomolecules based on their hydrophobic properties.